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Application of a Heat Integrated Post-Combustion 
Carbon Dioxide Capture System with

Hitachi Advanced Solvent into Existing
Coal-Fired Power Plant (FE0007395) 

An Advanced Catalytic Solvent for Lower Cost 
Post-Combustion CO2 Capture in a
Coal-Fired Power Plant (FE0012926)

Heather Nikolic, Jesse Thompson, 
James Landon and Kunlei Liu 

University of Kentucky - Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml
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Project Summary

Motivation
•Heat integration to recover rejected energy
• Thermal compression via enriched carbon loading 
to the stripper
•Reduced capital cost

Team Members
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• Near-zero makeup 
water for amine loop

• Advanced Solvent

• Utilization of low grade heat via internal heat pump
• Secondary stripper
• Liquid desiccant for cooling tower

UKy-CAER Advanced Technology
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Small Pilot Project Overview

• 0.7 MWe (2 MWth)
advanced post-combustion
CO2 capture pilot 

• Catch and release program 

• Designed as a modular
configuration 

• Testing at Kentucky Utilities
E.W. Brown Generating
Station in Harrodsburg, KY,
approximately 30 miles
from UKy-CAER

• Includes several UKy-CAER developed 
technologies

• Two solvent testing campaigns (MEA 
baseline and advanced H3-1)

Lexington 

Harrodsburg
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BP1:  October 1, 2011 to January 31, 2013 (16 months)

BP2:  February 1, 2013 to August 31, 2013 (7 months)

BP3:  September 1, 2013 to March 31, 2015 (19 months)

BP4:  April 1, 2015 to March 31, 2017 (24 months)

Scope Addition: April 1, 2017 to March 31, 2019 (24 months)

Small Pilot Project Performance Dates

2011 2012 2013 2014 2015 2016 2017 2018 2019

BP1 BP2 BP3 BP4 New Scope
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All Criteria Met and Project Key Findings

MEA 
Parametric 
Campaign

MEA
Long-term 
Campaign

H3-1 
Parametric 
Campaign

H3-1
Long-term 
Campaign

  Process can easily
capture 90% of CO2

  Solvent regeneration energy of
1200–1750 BTU/lb CO2-captured,

 ~13% lower than
Reference Case 10 (RC 10)

  Process can easily
capture 90% of CO2

  Solvent regeneration energy of
1200–1750 BTU/lb CO2-captured,

 ~13% lower than
Reference Case 10 (RC 10)

    Ambient conditions have an
impact on CO2 capture

  Absorber liquid/gas distribution
has an impact on performance

  Lean/rich exchanger
performance is critical

  Elemental accumulation
in the solvent

needs to be monitored

    Ambient conditions have an
impact on CO2 capture

  Absorber liquid/gas distribution
has an impact on performance

  Lean/rich exchanger
performance is critical

  Elemental accumulation
in the solvent

needs to be monitored  Solvent regeneration energy of
900–1600 BTU/lb CO2-captured,

~36% lower than RC10
  Secondary air stripper 
performs as expected

  Solvent regeneration energy of
900–1600 BTU/lb CO2-captured,

~36% lower than RC10
  Secondary air stripper 
performs as expected

   90% CO2 capture and low 
solvent regeneration energies 

are possible with a range of 
solvent concentrations

   90% CO2 capture and low 
solvent regeneration energies 

are possible with a range of 
solvent concentrations
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Partial CO2
recycling

(10-20% of CO2
captured) to 

enhance 
gaseous CO2

pressure at the 
absorber inlet.

A heat-integrated post-combustion CO2 capture system with:

Project Success Criteria - Achieved
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Much cooler 
recirculating 

cooling water,
3-9 °F 

compared
to a 

conventional 
cooling tower 
at the same 

ambient 
conditions.

A heat-integrated post-combustion CO2 capture system with:

Project Success Criteria - Achieved
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Liquid/gas distribution can significantly reduce the absorber 
efficiency. 

Project Key Finding

Process data with constant absorber L/G, inlet CO2

concentration, inlet amine CO2-loading and temperature.
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Understanding the L/R exchanger performance is critical when 
comparing regeneration energies. 

Project Key Finding
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Positive correlation between NH3 emissions and higher Fe in the solvent.

Ammonia Emissions and Iron
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Accumulation of 

contaminants from service 

water is minor compared to 

the impact from coal flue gas

Service Water Usage
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Hitachi

Hitachi MEA

MEA

Corrosion Characterization
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UKy-CAER’s 

Pathway to 

Target:

• 3rd generation 

solvent

• Hybrid process 

with pre-

concentrating 

membrane

• Absorber gas 

inter-conditioner

Summary of TEA (@2007$)
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The Cost of 2nd Generation Solvents 
Prevents COE Reduction

MEA Solvent A Solvent B

Make-up Rate (kg/ton CO2) 1.5 0.5 0.5

Energy Consumption to MEA 30% less 40% less

Unit Cost ($/kg) 1.5 9 15

Solvent Cost 2.25 4.5 7.5

COE (using MEA Solvent Cost) 106.5 93.3 91.2
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3rd Generation Solvent is Needed
• Kinetics are faster than 2nd generation, but 

• 25-30% better than MEA while the cost is 2x
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Large Bench Project Overview
• 3rd generation solvent
• Enriched carbon loading prior to solvent regenerator

 Pre-absorber CO2 enrichment 
 Rich Solution dewatering

Absorber

Stripper

CO2 Out

Polishing 

Heat Exchanger

Rich-Lean
Heat Exchanger

CO2 Lean
Solvent

CO2 Rich 
Stream

Membrane 1
(Gas Separation)

CO2 Lean 

Stream

Coal-Fired 
Flue Gas 
Generator

Water Wash

Recovered Solvent

Treated Flue Gas Out

CO2 Rich Solvent

~ 4 bar

135°C

Water

Cooling 

Water

Heat Input

40°C

40°C

55°C

40°C

CAER-B3 Solvent
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The OPEX, energy consumption, is particularly determined by the relationship of CO2

pressure between the scrubber and the stripper which MUST FOLLOW the thermodynamic 
Gibbs free energy.

• Gibbs–Helmholtz equation
• Clausius–Clapeyron relation

𝑃𝐶𝑂2= 𝑃𝐶𝑂
2,𝑠𝑐𝑟𝑢𝑏

× 𝑒

∆ℎ𝑎𝑏𝑠,𝑐𝑜2
𝑅

×
1

𝑇𝑟𝑒𝑓
−
1

𝑇

Motivation

∆𝐻 = 60
𝑘𝐽

𝑚𝑜𝑙
Ts = 45oC

• Driving force for high carbon loading
• Thermal compression at low temperature then less degradation
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Effectiveness of Pre-concentrating 
Membrane

• Solvent independent
• Stable performance
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Updated 0.7 MWe CCS Flowchart for 

Scope Addition

Target: ~800 BTU/lb-CO2
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CO2 Pre-concentrating Membrane
(currently using MTR Product)
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Technology Development Pathway
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